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a b s t r a c t

The sudden appearance of the SARS-CoV-2 virus and the onset of the COVID-19 pandemic triggered
extreme and open-ended ‘‘lockdowns’’ to manage the disease. Should these drastic interventions be
the blueprint for future epidemics? We construct an analytical framework, based on the theory of
random matching, which makes explicit how epidemics spread through economic activity. Imposing
lockdowns by assumption not only prevents contagion and reduces healthcare costs, but also disrupts
income-generation processes. We characterize how lockdowns impact the contagion process and social
welfare. Numerical analysis suggests that protracted, open-ended lockdowns are generally suboptimal,
bringing into question the policy responses seen in many countries.

© 2021 Published by Elsevier B.V.
1. Introduction

The emergence of the SARS-CoV-2 virus and the onset of the
OVID-19 pandemic motivated many governments to bring to
stand-still all human activity, social and economic, for many
onths. The stated objective is to slow down contagion and pre-
ent healthcare systems from being overwhelmed. Many coun-
ries have gone to the extreme of imposing long-lasting and
rastic ‘‘lockdowns’’ (e.g., China, Italy, Spain, UK), i.e., manda-
ory stay-at-home orders, business closures, and sweeping limita-
ions to the freedom of movement. These lockdowns (also known
s NPI’s for nonpharmaceutical interventions) have been imple-
ented on an open-ended basis, with a severity and duration
rimarily tied to the growth rate in infections. Apart from a few
otable exceptions (e.g., Sweden), most countries have sought
o minimize a single risk, that of contagion from the SARS-CoV-
virus, without fully accounting for the economic and social

onsequences of doing so. In the aftermath of these interventions,
public debate emerged questioning the optimality of these
olicies. Are these drastic interventions optimal from a social
elfare perspective? Should we keep them in place to address

uture epidemics? Should their implementation be open-ended?

✩ The authors thank the Editor, Andrés Carvajal, as well as an anonymous
associate editor and two reviewers for many helpful comments on a previous
version of this paper.
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ne University dr., Orange, CA 92866, United States of America.

E-mail addresses: camera@chapman.edu (G. Camera),
lessandro.gioffre@unifi.it (A. Gioffré).
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The answer to these questions partly depends on how one
models the relevant economic tradeoffs. This paper develops an
analytical framework that makes explicit the process of conta-
gion, and ties it to the frequency of economic activity. The model
economy has a constant population composed of individuals who
can earn income only in periods in which they meet a trade part-
ner. Meetings occur on a market where a matching process pairs
individuals at random—all pairs generate a deterministic flow of
income, and dissolve at the end of the period. The model assumes
transmissibility via asymptomatic individuals, a central feature of
the COVID-19 epidemic, as well as no cost from trading while
asymptomatic. This implies that individuals who are unaware
of being infected, have no incentive to stay out of the market
and, hence, can spread the disease by meeting healthy trade
partners. Repeating this random matching process period after
period is how the epidemic spreads over time. It is assumed that
precluding business activity by closing the market, i.e., imposing
a lockdown, stops further contagion. Apart from the possibility
of reaching herd immunity, no other intervention is assumed
to exist to manage the progression of the disease. Therefore,
lockdowns are the go-to policy to reduce healthcare costs, which
are assumed proportional to the spread of the infection across the
population. The severity of the policy intervention corresponds to
the lockdown duration.

Our analysis is divided into two parts. First, we lay out the
mathematical machinery needed to characterize the contagion
process for general interventions, ranging from minimal as in
Sweden to extreme as in China or Italy. The initial step is to
construct transition matrices that determine the path of the

https://doi.org/10.1016/j.jmateco.2021.102552
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nfection, for any initial state of the infection. These are then
sed to calculate the dynamic evolution of the epidemic when
e impose lockdowns of various degree of severity. The analysis
onsiders two scenarios, depending on whether the infection can
r cannot die out by achieving herd immunity by medical means
r naturally.
Second, we construct a measure of social welfare that com-

ines individual payoffs from trade with expected healthcare
osts associated with the spread of the disease. Lockdowns now
elineate a tradeoff: more drastic interventions prevent over-
helming the healthcare system but destroy income flows. Nu-
erical analysis suggests that welfare nonlinearly responds to the
everity of the intervention, which leads to two main results. Im-
osing a lockdown is generally welfare-enhancing if the infection
preads easily. However, the welfare benefit rapidly dissipates
s the lockdown length increases, and turns into a welfare loss
ventually. If the infection is detected early and has reached
nly a small subset of the population, then imposing an extreme
ockdown is counterproductive in terms of social welfare. Open-
nded lockdowns are not necessarily optimal either, especially if
he epidemic can be brought under control via herd immunity.

Intuitively, in our model the social gains from not overbur-
ening the healthcare system are eventually overtaken by the
conomic losses stemming from further reductions in income
lows. This is why extreme lockdowns are largely suboptimal. In
act, the analysis also reveals that naïvely matching the severity
f the intervention to the spread of the infection is not the most
ogical policy because welfare gains are non-linear. Overall, this
xercise suggests that policymakers should tread carefully. To
he extent that healthcare conditions and income-generating pro-
esses are country-specific, the model indicates that the tradeoffs
ssociated with lockdown policies are also country-specific. In
ther words, there is no ‘‘one-size-fits-all’’ kind of policy, which
eems opposite to the adoption patterns seen so far, where many
overnments simply followed similar policies.
There is a voluminous literature on infectious diseases, an

xtensive review of which is beyond the scope of this paper. Due
o space limitations, we refer the reader to the recent survey
n Avery et al. (2020) and here we explain what our study adds
o the existing literature. The novelty of our contribution lies
n the approach to studying the diffusion of epidemics, which
elies on the theory of random matching. This technique allows
s to offer a framework that makes explicit the transmission
f a disease in the population—in contrast to the standard epi-
emiological model, which uses a reduced-form approach. This
ramework is then used to assess the economic optimality of
olicy interventions based on the lockdowns imposed in the
ecent past.1

1 Our objective to study the welfare impact of health policies is shared by
ther recent works, all of which modify the standard SIR framework while
aintaining its basic reduced-form approach. For example, Eichenbaum et al.

2020) assume that economic decisions affect the path of the disease because
onsuming and working less reduces the probability of becoming infected
hence, transition probabilities between health states). This gives rise to an
xternality that can be partially internalized by imposing limits to consumption
nd work activity (such as it happens in a lockdown). The model in Goenka
t al. (2014) also considers feedback effects from disease to economic decisions.
hey embed the SIR model into a neo-classical growth model where investment
n health capital alters the incidence of the disease, and the latter affects labor
upply. They solve an optimal control problem, showing that both a disease-free
teady state and a disease-endemic steady state may exist. The study in Alvarez
t al. (2020) also follows the typical approach in the epidemiology literature
here the evolution of the epidemic is a function of exogenous parameters,
nd extends it by embedding an optimal control problem, whereby a social
lanner chooses the diffusion parameter to maximize social welfare. An optimal
ontrol problem is also at the heart of Acemoglu et al. (2020), which extends the
anonical single-group SIR model to a multi-group version with group-specific
arameters. In particular, contact rates are governed by a matching function
2

To elaborate on this, start by noting that the typical model
used in the epidemiology literature – known as the SIR model – is
based on three possible states for an individual: S for susceptible
(to infection), I for Infected, and R for Recovered. The evolution
of these three mutually exclusive states is governed by laws of
motion that underlie a reduced-form process of contagion. We
retain the three-state representation typical in the literature, and
innovate by constructing an explicit model of contagion, which
is based on a pairwise random meeting process and the analysis
technique developed in Camera and Gioffré (2014). In this man-
ner, the model allows us to track the evolution of the disease
when the markets are open or close – thanks to the explicit
matching process – and thus study the optimality of lockdown
policies under alternative scenarios for the initial state of the
infection and the probabilistic nature of reaching immunity.

Given the persistent nature of the current epidemic, we also
allow recovered individuals to be potential candidates for re-
infection—something that is atypical in epidemiological models,
where the recovered cannot be re-infected. To explain, in the
standard SIR framework the number of susceptible individuals
decreases over time due to the recovery process. In this case,
threshold parameters exist such that an absorbing state is even-
tually reached where the infection vanishes as enough individuals
contract the disease and herd immunity is naturally achieved.2 By
contrast, we work with a model where everyone in the popula-
tion is generally susceptible to the disease until a point where
the disease can be fully eradicated. It is assumed that in each
period there is a probability that contagion stops, and until that
happens everyone remains susceptible to infection, even recov-
ered individuals. In this manner, a state of immunity is reached
probabilistically and simultaneously by everyone in the popu-
lation. This is a mathematically convenient way to capture a
prominent aspect of current thinking behind lockdown policies:
the COVID-19 disease is so dangerous and hard to contain that
the epidemic must be stopped with a mass-vaccination campaign.
This set-up allows us to trace a most favorable scenario for
imposing lockdowns, which is when they delay the progression
of the disease while medical and pharmacological interventions
are being developed to address the problem.3

The paper proceeds as follows. Section 2 presents the model
economy. Section 3 characterizes the dynamic process of conta-
gion. Section 4 studies the impact of lockdowns on the spread of
the epidemic in a baseline, worst-scenario model when there is
no herd immunity threshold. In Section 4.4, we extend the anal-
ysis to a richer model where herd immunity can be reached by
naturally acquired immunity and medical discovery. In Section 5,
we apply this machinery to determine how interventions of vary-
ing severity impact social welfare; this is done by studying in-
come losses and healthcare cost savings associated with lock-
downs via numerical experiments. Broader policy implications
of our analysis are discussed in Section 6, which concludes the
study.

that is group-specific. In this context, policies that apply differential lockdowns
across groups are superior to uniform policies that identically affect everyone
in society. The main difference between these frameworks and ours is that we
do not use a reduced-form approach; we construct an explicit meeting process
that determines the spread of the infection.
2 The theoretical analysis in Busenberg and van den Driessche (1990) shows

how three threshold parameters govern population growth, the growth of cases,
and the possibility that the disease becomes endemic.
3 ‘‘But there is one fact I want every American to know: People who are not

fully vaccinated can still die every day from COVID-19’’ (President Joe Biden
White House, 2021). This statement mirrors the official WHO policy that ‘‘Herd
immunity against COVID-19 should be achieved by protecting people through
vaccination, not by exposing them to the pathogen that causes the disease’’
(WHO, 2020b). This policy has led many countries to mandate lockdowns
in order to gain the time necessary to set-up and execute mass-vaccination
campaigns (e.g., see Wall Street Journal, 2021).
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. Modeling the economy

Time is discrete and infinite. The economy is composed of a
onstant population of N = 2n ≥ 4 workers who can trade
n a decentralized market. In every period t = 0, 1, 2, . . .,
he market can be open or closed. If the market is closed, all
ndividuals remain isolated and each individual obtains a payoff
y. If the market is open, then individuals meet to trade in pairs.
A policymaker chooses whether the market is closed or open in
a period, which is discussed later.

Here, we note that if the market is open, then it is possible (but
ot certain) for an individual to meet a random trade partner. We
nterpret a meeting as a trading situation that is advantageous
o both individuals. Considering a generic pair (i, j), individual i
btains payoff ȳ > 0 from being in the meeting. Symmetrically,

we have a payoff ȳ for individual j. The payoff corresponds to the
instantaneous utility assumed in matching models of the labor
market (Mortensen and Pissarides, 1994). We normalize y = 0 to
underline that economic activity is beneficial, as it is necessary
to create economic surplus. Market inactivity harms economic
welfare because it does not allow surplus to be generated.

Individuals discount future payoffs with a common discount
factor δ ∈ (0, 1). Letting yt ∈ {y, ȳ} denote the generic payoff to
n individual at date t , the expected payoff to any individual at
he start of the economy is therefore
∞

t=0

δtyt .

It is assumed that an infectious disease exists in the pop-
lation, which can be transmitted only when individuals meet
o trade. That is to say, in the model contagion occurs solely
ia business activity and not social interactions. This process is
escribed in what follows.

he health status of individuals. Partition the population of work-
rs N into three sets denoted healthy, symptomatic and asy-
ptomatic. These last two sets are collectively called infected

ndividuals. It is assumed that an asymptomatic individual be-
omes symptomatic at the start of a period with constant prob-
bility s ∈ (0, 1). An infected individual can fully recover from a

period to the next with probability a ∈ (0, 1), thus regaining a
ealthy state and becoming non-infectious, a standard assump-
ion in the epidemiology literature.4 This probability of recovery
s independent of symptoms. As a result, the healthy set includes
oth individuals who were never infected or those who were and
ecovered. We thus have three possible states for an individual:
nfected and symptomatic, infected and asymptomatic, and healthy
never infected and recovered); see Fig. 1.

We make two assumptions that match the empirical char-
cteristics of the COVID-19 disease and partly depart from the
tandard SIR model discussed in the epidemiology literature.

ssumption 1. An individual who is recovered is not infectious
ut is susceptible to future infection.

This assumption sets our model apart from the standard epi-
emiology literature, which typically assumes that recovered in-
ividuals cannot be re-infected and cannot infect others (e.g., see
very et al., 2020).

ssumption 2. An individual who is infected and asymptomatic
annot be distinguished from a healthy individual.

4 We also assume that the state of an infected individual (symptomatic or
ot) is probabilistically determined at the start of each period. This allows us
o avoid tracking the history of symptoms of individuals, which is necessary to
eep the state space manageable and the model tractable.
 p

3

Fig. 1. State transitions.

This implies that the only state that can be identified is being
symptomatic, thus allowing for these individuals to be isolated.
Neither the asymptomatic individual nor her counterparts can
detect the presence of the infection. It follows that in our model
trading activity can transmit contagion when asymptomatic and
healthy individuals meet to trade. It is assumed that in such
a meeting contagion occurs with probability η ∈ (0, 1], inde-
pendent of whether or not the healthy individual is someone
who recovered from the disease in the past. In other words, it
is assumed there is no permanent immunity to the disease and
that it cannot be rooted out by naturally acquired immunity or
medical means. That is, we make the infection very difficult to
handle, so we give best shot at a lockdown policy to be welfare
enhancing.5 Since not all infected individuals are present in the
market – symptomatic individuals are excluded – to calculate
the transmission rate of the disease we must first discuss how
individuals are matched into potential trade meetings. This is
done in the following subsection.

Trade meetings. Consider a period when the market is open. At
the start of the period a matching process determines a proposed
partition of the entire population of workers, into pairwise trade
meetings. This means that every worker is assigned to a proposed
pair, for the period. Pairs are selected using a uniform random
matching process, e.g., as in Diamond (1982). Therefore, in each
period t , the probability that individual i is assigned to meet any
other individual is 1

N−1 . No meeting can last for more than one
period, meaning that rematching takes place in each new trading
period.

The population partition is only ‘‘proposed’’ because not all
meetings necessarily take place: we assume that symptomatic
workers are prevented from joining a meeting (e.g., they are sick,
so cannot work). As a result, only healthy and asymptomatic
workers join their proposed meeting. To clarify, consider Fig. 2,
which displays the timeline of events in a period. First, meetings
are proposed (a partition is proposed), then all workers join their
assigned meeting but for symptomatic individuals. This is an
analytically convenient way to maintain tractability, because we
can run the matching process on a stationary population of size N .

5 We later relax this assumption by introducing the possibility of medical
rogress or naturally acquired immunity as a way to root out the disease.
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Fig. 2. Timeline of events.
i

We now explain the remaining aspects of the timing of events
n a period. If there are k infected individuals in the economy
after meetings take place in a period t , then at the start of the
following period they may decline to k̃ ≤ k because some of them
might recover before a new set of meetings takes place. At that
point a set of N/2 trades is proposed by assigning everyone in
the population to a trade pair, using a uniform random matching
process. After this assignment, some infected individuals may
show symptoms and are prevented from meeting their assigned
trade partner. As a result, not all proposed trades take place. In
the meetings that do take place, some will involve asymptomatic
individuals who may end up transmitting the infection to their
healthy partner. Hence, in t+1 after meetings take place we have
k′

≥ k̃ infected individuals. This process repeats itself indefinitely
and governs the progression of the infection in the economy.

Now consider a proposed trade meeting. We say that we have
a mixed match if the meeting involves an infected and a healthy
individual. From an ex-ante perspective, a mixed match results in
a new infection with probability

p := (1 − s)η.

This is the probability that the infected individual in the proposed
mixed match remains asymptomatic in the period, and infects her
healthy counterpart. With the complementary probability 1 − p
he proposed meeting does not result in a new infection because
i) if the infected is symptomatic (with probability s), then she
annot enter the meeting and (ii) if the infected is asymptomatic,
hen contagion does not occur with probability 1 − η.6

Summing up, in our model the infection is transmitted by
symptomatic individuals, who cannot be recognized and iso-
ated, in contrast with those who show symptoms—who can
e excluded from all trading activity. Hence, the asymptomatic
re the main channel of contagion, which reflects the empir-
cal observation that the SARS-CoV-2 virus is infectious even
ithout symptoms. Two other empirically relevant features of
he model are that the disease is not necessarily endemic in
he population (recovery is possible), and past exposure to the
nfection is not a guarantee of permanent immunity. Finally, the
mpirical observation that the disease has a very low fatality rate
n the working-age population motivated us to consider a zero
atality rate since we only consider contagion occurring through
conomic interactions.7 This is also analytical convenient as doing

6 This is a convenient way to model the transmission process as opposed
o tracking individual histories of those who have been exposed to the virus.
his allows us to avoid tracking all individual histories and characterize the
istribution of all individuals across a minimum of six different states, healthy
nd never exposed, exposed and asymptomatic, exposed and symptomatic,
xposed and recovered, exposed and deceased, exposed and relapsed.
7 The Infection Fatality Rate (IFR) from COVID-19 disease for individuals in

he working-age category is small. In the US, it is 0.02% for a 20–49 year old
nd 0.5% for a 50–69 year old. See CDC (Table 1 2020). Other studies report
he average global IFR from COVID-19 as being 0.15% (Ioannidis, 2021a) and the
edian IFR for the population below 70 years of age as 0.15% (Ioannidis, 2021b).
4

so makes the population size stationary. We now proceed by
showing how to trace the dynamics of the contagion in our
model.

3. Characterizing the evolution of the disease

As seen above, the evolution of the disease in the economy
involves two separate processes. The contagion process that oc-
curs through trading activity, and the recovery process that takes
place in-between separate rounds of trading. This section dis-
cusses these two processes, starting with the contagion process
operating in the market, which is based on the study in Camera
and Gioffré (2014).

3.1. Contagion through business activity

Consider the start of a period when the market is open. For
notational convenience let k̃ = k denote the number of infected
individuals. That is to say, there are k = 1, . . . ,N infected
ndividuals who might interact in the market.

We start by deriving the probability Qkk′ (N) that k′
≥ k

individuals are infected by the end of a period of market ac-
tivity. Two sources of randomness affect this probability: the
matching process, which determines how many meetings occur
between infected and healthy individuals, and the biological pro-
cess, which determines if the infection is transmitted in these
meetings.

Meetings between healthy and infected individuals. Here, we de-
rive the probability λkℓ(N) that, if we have k infected individ-
uals and N − k healthy individuals, then there will be ℓ =

0, 1, . . . ,min(k,N − k) pairs composed of one infected and one
healthy individual. We call these pairs ‘‘mixed matches’’, i.e., the
only meetings where contagion can occur in the model. We have:

λkℓ(N) :=

⎧⎨⎩ ℓ!
(k
ℓ

)(N−k
ℓ

)
(k − ℓ − 1)!!(N − k − ℓ − 1)!!

(N − 1)!!
if ℓ ∈ Lk

0 if ℓ /∈ Lk,

(1)

where8

ℓ ∈ Lk :=

{
{0, 2, 4, . . . ,min(k,N − k)} if k = even,

{1, 3, 5, . . . ,min(k,N − k)} if k = odd. (2)

To derive (1), notice that if k is even (odd), then the number
ℓ of mixed matches cannot be odd (even), which explains why
λkℓ(N) = 0 in (1) if ℓ /∈ Lk. Now consider ℓ ∈ Lk. There are

(k
ℓ

)
8 In expression (1) we use the standard notation !! of the double factorial.

For an integer n, the double factorial is recursively defined as n!! = n · (n − 2)!!
and, by definition, we have 0!! = 1 and (−1)!! = 1.
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ossible ways to draw ℓ individuals from the set of those who
are currently infected on the market (k individuals). Similarly,
here are

(N−k
ℓ

)
possible ways to draw ℓ individuals from the set of

hose who are currently healthy on the market (N−k). All healthy
individuals, be they infected and recovered or never infected, are
on the market trading. Hence, there are(
k
ℓ

)(
N − k

ℓ

)
possible ways to draw ℓ infected and ℓ healthy individuals. Con-
sider now all possible ways to form ℓ mixed matches. Fix an
infected individual and match him to any of the ℓ healthy indi-
viduals. Once this match is formed, fix another infected individual
and match him to any of the ℓ−1 remaining healthy individuals.
Repeating the process until everyone is matched, there are

ℓ · (ℓ − 1) · (ℓ − 2) · · · 3 · 2 · 1 = ℓ!

possible mixed matches between ℓ infected and ℓ healthy indi-
viduals.

Hence, the number of pairings that give rise to at least ℓ mixed
matches is

ℓ!

(
k
ℓ

)(
N − k

ℓ

)
.

Since we are interested in finding the number of pairings that
generate exactly ℓ mixed matches, we need to make sure that
the pairings among those who are left do not generate additional
mixed matches. In other words, we need to make sure that
the remaining k − ℓ infected individuals are matched among
themselves, and so are the remaining N−k−ℓ healthy individuals.
Recall that k − ℓ and N − k − ℓ are necessarily even numbers.
Considering the set of remaining infected individuals and fix one
of them. Match him to one of the remaining k − ℓ − 1 infected
individuals of this set. Once this match is formed, fix another
infected individual and match him to one of the k−ℓ−3 infected
individuals who are left. Repeating this procedure until all k − ℓ

infected individuals have been matched among themselves gives

(k − ℓ − 1) · (k − ℓ − 3) · · · 3 · 1 = (k − ℓ − 1)!!

possible pairings. Similarly, we have (N − k − ℓ − 1)!! possible
pairings among the remaining healthy individuals.9

Therefore, the number of pairings that generate exactly ℓ mix-
ed matches is

ℓ!

(
k
ℓ

)(
N − k

ℓ

)
(k − ℓ − 1)!!(N − k − ℓ − 1)!!.

Finally, using the same argument above, the number of possible
proposed pairings in the population of N individuals, is (N − 1)!!.
This concludes the derivation of the probability λkℓ(N) of having
ℓ market meetings among healthy and infected individuals, when
there are k infected individuals.10

9 Note that if ℓ = k then by definition of the double factorial we have
k − ℓ − 1)!! = 1 and if ℓ = N − k then we have (N − k − ℓ − 1)!! = 1.
10 Note that λkℓ(N) for ℓ ∈ Lk simplifies to

kℓ(N) = 2ℓ
Γ (k + 1)Γ (N − k + 1)Γ ( N2 + 1)

Γ (ℓ + 1)Γ ( k−ℓ
2 + 1)Γ ( N−k−ℓ

2 + 1)Γ (N + 1)

here we have used m! ≡ Γ (m+ 1), with Γ representing the gamma function,

nd, for m = 2k − 1 (odd number), we have used m!! ≡
(2k)!
2kk!

. This functional

ransformation of λkℓ(N) simplifies the calculations in Matlab, where we can use
he gammaln() function to work with log linearized expressions.
 λ

5

Transmission of the infection conditional on a mixed match. The
nfection might not spread in all mixed matches because we
ssumed that transmission of the disease between a healthy and
n infected individual occurs with probability p < 1. This has two

implications. First, the number ℓ of mixed matches that can result
in k′

− k ≥ 0 new infections is ℓ = k′
− k, . . . ,min(k,N − k).

Second, the probability that we have enough market meetings
capable of creating k′

− k new infections is
in(k,N−k)∑
ℓ=k′−k

λkℓ(N),

i.e., the probability that we have at least k′
− k mixed matches.

By construction, the sum of probabilities
∑min(k,N−k)

ℓ=0 λkℓ(N) = 1.
To derive the conditional probability that transmission occurs

in exactly k′
− k of these ℓ ≥ k′

− k matches start by considering
the case ℓ = k′

− k. Here, the probability that the infection is
transmitted in all mixed matches is pk

′
−k. Instead, if ℓ > k′

− k,
then transmission occurs in exactly k′

− k cases with probability(
ℓ

k′ − k

)
pk

′
−k(1 − p)ℓ−(k′−k)

Putting together all this information leads to the following:

Lemma 1. The probability that k′
≥ k individuals are infected by

the end of a period of market activity is:

Qkk′ (N) =

min(k,N−k)∑
ℓ=k′−k

λkℓ(N)
(

ℓ

k′ − k

)
pk

′
−k(1 − p)ℓ−(k′−k). (3)

In deriving Qkk′ (N) we have only considered states in which
someone is infected, k, k′ > 0. For the remaining cases k = 0 and
k′

= 0 we define the transition probabilities Q00 = 1, Q0k′ = 0
for all k′ > 0, and Qk0 = 0 for all k > 0. The first two definitions
imply that the zero-infection state is absorbing (if the disease is
non-existent we cannot have new infections) and the third simply
follows from the observation that market interaction can only
generate new infections.

Note that the random process determining the number of in-
fected individuals is a finite Markov chain because the transition
probability Qkk′ depends only on the state k = 0, 1, . . . ,N at
the start of a trading period and not on the entire history of
infections.11

These considerations lead to the following.

Corollary 1. Let the market be open at the start of a period. The
spread of the infection during the period is fully described by the
(N + 1) × (N + 1) upper-triangular Markov matrix Q:

Q :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 . . . 0 0 0
0 Q11 Q12 0 0 0 . . . 0 0 0
0 0 Q22 Q23 Q24 0 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 0 . . . QN−2,N−2 QN−2,N−1 QN−2,N
0 0 0 0 0 0 . . . 0 QN−1,N−1 QN−1,N
0 0 0 0 0 0 . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

11 The proof of Lemma 1 immediately implies that all Qkk′ (N) ≤ 1, as
by construction they are probabilities. Although the analytical calculation∑N

k′=0 Qkk′ (N) = 1 is not straightforward for a generic N , we note that this holds
because Qkk′ (N) = 0 for k′ < k and k′ > min(2k,N), and the states with positive
transition probability k′

= k, . . . ,min(2k,N) are mutually exclusive. By means
of example, if N = 4, p = 1/2, k = 2 we have λ20 = 1/3, λ21 = 0, λ22 = 2/3,
nd Q22(4) = λ20 + λ22

(2
0

)
( 12 )

2
=

1
3 +

1
6 , Q23(4) = λ22

(2
1

)
( 12 )

2
=

1
3 , Q24(4) =(2)( 1 )2 =

1 , so
∑4 Q ′ (4) = 1.
22 2 2 6 k′=2 2k



G. Camera and A. Gioffré Journal of Mathematical Economics 97 (2021) 102552

τ

s
M
a

Fig. 3. An open-ended lockdown intervention (T , j). Notes: The lockdown policy (T , j) comes into effect in τ . The market reopens regularly every T periods, in
+ T , τ + 2T + j, . . .. O = market is open.
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Because the number of infections is a finite Markov chain the
quare matrix Q is a Markov matrix. An important property of
arkov matrices is that the transition probabilities taking place
fter j ≥ 1 steps is determined by the product Qj. Matrix Q

is a central element to calculate the evolution of the disease in
the economy, but not the only one. The reason is that Qkk′ (N)
only tells us the probability that k′

− k ≥ 0 new infections
occur as a consequence of market activity. It does not account
for the possibility of recovery from the disease, in which case the
infection might decline or even be completely eradicated. This
additional component is discussed in what follows.

3.2. A random recovery process

Fig. 2 indicates that the number of infected individuals present
at the start of a trading period depends on the recovery process
that occurs between the end of a period and the beginning of the
next. This process is next described.

Assume that an individual who results in being infected by the
end of a period, recovers with probability a by the beginning of
the following period. This implies that if we start with k infected
individuals, and some recover, then at the beginning of next
period we may have k̃ ≤ k infected individuals.

We use Rkk̃ to denote the probability that, given k = 0, 1, . . . ,
N individuals being infected at the end of a period, k − k̃ have
recovered by the start of the following period, where

Rkk̃ =

(
k

k − k̃

)
ak−k̃(1 − a)k̃ k̃ = 0, . . . , k. (4)

It should be clear that if k = 0, then the contagious process
stops and the disease is permanently eradicated. So, given k =

0, 1, . . . ,N infected individuals, the disease is eradicated with
probability Rk0 = ak. With the complementary probability, it
continues.

Again, the random process determining the number of infected
individuals between the end of a period t at the beginning of
t + 1 is a finite Markov chain because the transition probability
Rkk̃ depends only on the state k = 0, 1, . . . ,N , i.e., the number
of infected individuals at the end of the period (not on the entire
history of infections).12

This discussion immediately implies the following.

Lemma 2. Let there be k = 0, 1, . . . ,N infected individuals at the
end of a period. The number of infected individuals at the start of
the following period is fully described by the (N + 1) × (N + 1)

12 By construction, R (N) ≤ 1 and
∑N R (N) = 1.
kk̃ k̃=0 kk̃ m

6

lower-triangular Markov matrix

R :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0 0
R10 R11 0 0 . . . 0 0 0
R20 R21 R22 0 . . . 0 0 0
R30 R31 R32 R33 . . . 0 0 0
.
.
.

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.
.
.
.

RN−2,0 RN−2,1 RN−2,2 RN−2,3 . . . RN−2,N−2 0 0
RN−1,0 RN−1,1 RN−1,2 RN−1,3 . . . RN−1,N−2 RN−1,N−1 0
RN,0 RN,1 RN,2 RN,3 . . . RN,N−2 RN,N−1 RN,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the next section, we show how to use matrices R and Q to
alculate the evolution of the number of infected individuals over
ime.

. How lockdowns affect the contagious process

In each period the market can be either open or closed. If the
arket is open, then the random matching process proposed N/2

rade meetings. If the market is closed, then everyone remains
nmatched for the period.

.1. The ‘‘lockdown’’ policy intervention

Market interventions are imposed by an external authority
a government), which can select to close the market for any
esired extended length of time, without restrictions and without
onsultation with the population. This is what we call a ‘‘policy
ntervention’’.

The policy is completely described by the two parameters
T , j), with T , j ≥ 0. The policy specifies an initial lockdown phase
omposed of T consecutive rounds of market inactivity, followed
y a reopening phase consisting of j consecutive trading rounds.
his means that the policy’s horizon is T + j periods, after which
he policy expires and a new policy can be considered. Fixing the
olicy horizon T + j to some arbitrary value, the parameter T
efines the severity of the lockdown; T = 0 corresponds to no
ockdown. As T increases, the lockdown is stricter.13

As an illustration, consider a policy (T , j) that is repeated until
he infection is eradicated. In this case we have what we call a
ockdown cycle (T , j). This kind of open-ended policy intervention
s illustrated in Fig. 3. The policy comes into effect in period τ ,
.e., the market is open up until period τ − 1. All trading stops
or T periods at regular intervals τ then τ + T + j, and so on. The
arket is also (re)opened for j periods at regular intervals τ + T ,

hen τ + 2T + j and so on.

13 Alternatively, one can interpret T/(T + j) as controlling what fraction of the
ntire set of market activities is forced to shut down until there is no more risk
f infection. For example, if T = 5 and j = 20 then only 20% of market activities
emain open (= 1/5), while 80% of the market is shut down. These are discrete
umps in market inactivity. The model can be generalized to attain smaller and
ore progressive reduction in market activity.
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As we assumed that infection can only occur in trade meetings,
the contagion spreads at random across the population only when
markets are open. Whenever a lockdown comes into effect, trade
stops for T consecutive periods, preventing further contagion and
allowing some recoveries to occur. Therefore, the two Markov
matrices Q and R allow us to characterize the evolution of the
infection in the economy for any policy intervention.

With this machinery, we can calculate the expected number
of infections for any given lockdown policy (T , j) and, its welfare
consequences.

4.2. The expected number of infections

It is convenient to first consider the case T = 0, i.e., when
there is no lockdown. Here, the contagion process in a period
is governed by the matrix product QR. This product accounts
for the trading and recovery processes described in Fig. 2. The
product QR is a stochastic matrix. It represents the Markov
process that governs the law of motion of the number of infected
individuals in the economy in any period t in which the market
s open. For any given number k = 0, 1, . . . ,N of individuals that
esult infected at the start of period t , it gives us the probabilities
hat we will have k′

= 0, 1, . . . ,N infected individuals at the start
f period t +1. This product accounts for two components affect-
ng the transition probabilities: Q determines the new infections
hat can emerge as a consequence of trading activity in period t;
his is an intermediate state reached in period t . The final state
s determined by R, which gives us the probabilities that – after
rading takes place – some infected individuals will recover by
he start of t + 1.

Because the product QR is a stochastic matrix of the Markov
ype, we can iterate on it to calculate the number of new in-
ections expected after any given number j ≥ 1 of consecutive
rading periods. In this case (QR)j governs the law of motion of
he number of infected individuals in the economy between the
tart of period t and the start of period t + j.
Based on the above, let us now consider an economy of size N

here there are k = 0, 1, . . . ,N infected individuals at the start
f a period. The expected number of infected individuals after
≥ 1 consecutive trading periods is

k(j) := e⊤

k (QR)j κ.

ere, κ = (0, 1, . . . ,N) is a column vector that contains all pos-
ible numbers of infected individuals in the economy (including
he 0 absorbing state, when the disease is eradicated). The vector
k is the (N+1)-dimensional column vector with 1 in the (1+k)th
osition and 0 everywhere else. The transpose of this vector,
enoted e⊤

k , selects the (1+k)th row of matrix (QR)j, i.e., the state
f the economy corresponding to k ≥ 0 infected individuals. The
on-zero elements of that row are the probabilities to transition
rom k to k′

= 0, 1, . . . ,min(2k,N) infected people by the end of
consecutive trading periods.
Now consider the case when T ≥ 1, i.e., when trading activity

estarts after T periods of complete isolation of all traders. During
he lockdown phase there cannot be further contagion and there
an be some recoveries. Hence, RT determines the decline in the
umber of infections that we can expect from T rounds of lock-
own, which is simply calculated by iterating T times transition
atrix R. When the lockdown is lifted the matrix product QR
etermines the spread of the infection in each trading period.
ence, we use (QR)j to determine the evolution of the infections
f the market remains open for j periods, calculated by iterating j
imes transition matrix QR.

With this machinery we can easily determine not only how
lockdown can slow down the evolution of infections, but also
ow reopening markets can speed up contagion. To explain, the
7

umber of infections at the end of a T -period lockdown phase
hat is imposed after j periods of consecutive market activity is
alculated using the transition matrix (QR)j RT . Conversely, the
transition matrix RT (QR)j allows us to determine the number of
infections at the end of j consecutive periods of market activity
after T periods of lockdown have been imposed. If we study
policies by considering the end of market activity phase as the
time reference, we thus have the following:

Lemma 3. Consider a lockdown policy (T , j). If we start with k =

0, 1, . . . ,N infected individuals, the expected number of infected
individuals at the end of the reopening phase following T periods
of lockdown, is

µk(T , j) = e⊤

k R
T (QR)j κ.

The lemma immediately follows from direct calculation. To see
how lockdowns affect the spread of the infection an example may
be helpful.

Example: no lockdown vs. 1-period lockdown. Suppose that k = 2
persons are infected by the end of a period. Let p = 0.1, a = 1/4,
and N = 1000. We wish to calculate the number of infected
individuals after the first period of market activity for two cases:
(i) no lockdown, in which case the market is open in the following
period, and (ii) lockdown, in which case the market is closed for
one period and reopens the period after the next. In each case
we have five possible outcomes: the contagion completely stops
by the end of the following period, or the number of infections
declines to 1, remains at 2, increases to 3, increases to 4. Each of
these events has an associated probability. Since

R20 = a2 = 0.0625, R21 = 2a(1 − a) = 0.375,

R22 = (1 − a)2 = 0.5625,

then, contagion stops with probability R20 ≈ 0.063 (no lockdown)
and R20R00 + R21R10 + R22R20 ≈ 0.191 (1-period lockdown). The
number of infections declines to 1 with probability R21Q11 ≈

0.337 (no lockdown) and R21R11Q11+R22R21Q11 ≈ 0.443 (1-period
lockdown). The number of infections remains at 2 with proba-
bility R21Q12 + R22Q22 ≈ 0.493 (no lockdown) and R21R11Q12 +

(R22)2Q22 ≈ 0.306 (1-period lockdown). The number of infections
grows to 3 with probability R22Q23 ≈ 0.101 (no lockdown) and
(R22)2Q23 ≈ 0.057 (1-period lockdown). Finally, the number
of infections grows to 4 with probability R22Q24 ≈ 0.006 (no
lockdown) and (R22)2Q24 ≈ 0.003 (1-period lockdown).

As a result, the expected number of infections after the first
period of market activity is 1.650, if the market is open tomorrow
because there is no lockdown, and 1.238 if the market is closed
tomorrow and reopens the period after.

4.3. How lockdowns affect the spread of the epidemic

We have now all the needed machinery in place to show how
the duration of the lockdown, T , influences the spread of the
epidemic in the basic model. In particular, we wish to determine
the effectiveness of lockdowns in speeding up the attainment
of a zero-prevalence state by leveraging the process of natural
recoveries while preventing further contagion. In a follow-up
section (Section 4.4), we extend this analysis to a richer model, in
which the zero-prevalence state can be attained also via naturally
acquired immunity or experimental medical procedures.

Numerical illustration. We start by showing that the probability
of transmission is central to determine whether or not lockdowns
are needed to bring contagion under quick control. To illustrate
this point, consider Fig. 4, which shows three different scenarios
for the transmissibility of the disease: low, medium, and high.
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Fig. 4. Infection progression without intervention (herd immunity impossible).
Notes: The population size is N = 1000, a = 0.25, s = 0.2 and there is no
ossibility of herd immunity. The three solid lines consider an initial infection
ate of 1%, the three dashed lines an infection rate of 10%. For each initial
nfection rate, the three curves are drawn for ‘‘low’’, ‘‘medium’’ and ‘‘high’’
ransmissibility of the disease, corresponding to η = 1/8, 3/8, 2/3.

he illustration considers the baseline case when herd immunity
s impossible, N = 1000, a recovery rate of a = 1/4 and
s = 0.2. We vary the transmissibility of the disease in a trade
meeting by varying η.14 For illustrative convenience, we trace the
policy over a horizon of 100 periods. If we think of a period as
a week, then we have approximately a two-year horizon, which
allows us to contrast the short run and long run impact of policy
implementation.15

In the figure, the share of infected individuals progresses
according to the process of market interactions. For low and
medium transmission rates, the natural recovery process pre-
vents an increase in infections. That is to say, if the natural
process of recovery is robust and the transmission rate is suffi-
ciently low, then the infection rate does not get out of control
and, even if markets remain fully open, it falls over time. Instead,
the disease rapidly spreads in the population if the transmission
rate is sufficiently high and does not decline. This brief illustration
suggests that lockdowns play the most significant role as possible
tools to curb contagion when the infection is highly transmissible,
which is the case we focus on in studying how lockdowns affect
the spread of the disease.

Consider a lockdown policy (T , j) that has two phases: a lock-
own phase lasting T periods, when markets are closed and there
s no contagion (only recoveries); and a reopening phase lasting j
eriods, when markets reopen and contagion restarts. We juxta-
ose a moderate to severe policy, which are differentiated by the
ength of the lockdown phase T = 10, 20, respectively. As T in-
reases, the recovery process lasts longer, causing a greater reduc-
ion in the number of infected individuals before markets reopen.

14 According to WHO (2020a), 80% of COVID-19 infections are mild or
symptomatic, which motivates s = 0.2. A recovery rate of 1/4 pins down a

duration of infection of about four weeks (the inverse of a). There is no definitive
way to pin down η, as the number of secondary infections generated from one
infected individual varies greatly according to context and time (WHO, 2020a).
The value 1/η pins down the expected number of meetings it takes an infected
individual to spread contagion to one healthy trade partner.
15 A period does not have an absolute interpretation in our model (day, week,
month) unless one specifies a discount factor. A discount factor that pins down
the length of time encompassed by a period: the higher the value the smaller
the length of time. This factor will become important when we calculate the
welfare consequences of a lockdown policy in a later section.
8

For each of these T values, we consider two alternative durations
j of the reopening phase: predetermined and state-dependent. In
the predetermined case, after the lockdown ends markets remain
open for j periods. In the state-dependent case, when markets
reopen a lockdown is immediately re-imposed if the infection
rate climbs above a pre-specified trigger level—hence j varies
depending on the progression of the infection.

In the numerical experiments, we consider the case of a highly
transmissible disease. The economy starts in period 0 with open
markets and two initial infection rates, 1% and 10% (k = 10,100
respectively, given N = 1000). Two different kinds of responses
are considered: quick and delayed. Under a quick response, there
is a short, 4-period interval before the start of the lockdown
phase. Under a delayed response, the delay grows to 12 periods.
We report the expected number of infections for moderate and
severe lockdowns, in the top and bottom panels of Fig. 5, re-
spectively. The dots pin down the period when lockdowns are
imposed and the squares the period when markets are reopened,
after which the reopening phase continues uninterrupted. The
horizontal lines correspond to the initial infection rate; they also
allow us to illustrate state-dependent policies according to which
a new lockdown is imposed based on, alternatively, a high and a
low infection trigger (10% and 1%). There are three main obser-
vations about these economies where herd immunity is assumed
impossible.

Observation 1. If the infection can be transmitted through eco-
nomic activity, then a lockdown slows down the progression of the
infection in proportion to its duration.

Consider the top panel. For any initial infection rate, high or
low, a moderate lockdown lowers the number of infections in the
short run, but not in the long run. The expected share of infected
individuals rapidly falls as soon as the lockdown is imposed, due
to natural recoveries and the absence of additional contagion.
This beneficial effect of the lockdown intervention is of short-
duration. Infections quickly climb back up as soon as markets
reopen, quickly surpassing the initial infection levels. By contrast,
in the bottom panel the lockdown lasts twice as long. This lowers
the long-run expected infection rate well below the initial levels,
even for the high 10% initial rate. Intuitively, the longer dura-
tion of the intervention greatly reduces the number of infected
individuals so the progression of the contagion is slow when
markets reopen. Seen this way, more severe lockdowns more
effectively reduce the expected number of infections in the long
run. However, even in this case infection rates eventually climb
back up. This last consideration leads to our second observation.

Observation 2. If herd immunity is impossible, then lockdowns are
ineffective at containing the epidemic in the long run, unless they are
repeated and persistently restrictive.

To illustrate this, consider the top panel of Fig. 5. Infections
climb back up very quickly when markets reopen, and rapidly
exceed the initial infection rate. In this sense, a one-time mod-
erate lockdown is ineffective at containing the epidemic in the
long run. To ensure low infection rates, the lockdown phase
must be repeated. To illustrate this suppose a new round of
lockdowns is triggered whenever the infection rate climbs up to
a pre-determined threshold, either high (10%) or low (1%). For a
low threshold, this occurs soon after markets reopen. For a high
threshold the delay between the end of a lockdown phase and a
new round of lockdowns is longer.

Now consider the bottom panel of Fig. 5. The severe lockdown
more greatly reduces infections. Hence, if policymakers quickly
impose a lockdown and intend to maintain the infection rate
below, say, 10%, then there is no need to impose another round of
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ockdowns. However, lockdowns must be re-imposed if the target
nfection rate is lower (say, 1%) or if lockdowns are imposed with
elay. This suggests one more observation.

bservation 3. Delays in policy implementation affect the long-run
ath and the need for repeated interventions.

In each panel of Fig. 5, infections quickly decline when lock-
owns are implemented. The faster markets are shut down the
ooner infection rates drop. However, implementation delays
ay also have an impact in the long run as the infections ex-
ected after a quick and a delayed response take two different
aths in the long run. The speed of policy response is clearly
elevant for short-run management of the disease, which may be
ritical if there are tight constraints on healthcare resources in the
hort run. In addition, the illustration suggests that the speed of
he response may also be relevant in the long run, especially for
etermining if lockdowns must be repeatedly applied to contain
he disease.

Overall, these numerical illustrations suggest that – presuming
hat herd immunity is impossible – imposing a one-time lock-
own cannot adequately curb the infection, even if the duration
f the lockdown is quite long. This brings into question the
mphasis on imposing one-time extreme lockdowns to contain
he epidemic—the ‘‘flattening the curve’’ notion made popular in
he media at the onset of the COVID-19 epidemic. The reason is
hat, since immunity is assumed impossible, as soon as markets
eopen the disease starts to spread again. In this case, markets
ust be shut down as long as necessary for the process of natural

ecoveries to bring down the number of infections to zero. At
hat point, markets can be reopened. The alternative to such and
xtreme intervention is to repeat the lockdown to maintain in-
ection rates at a manageable level. The open question is whether
hese conclusions change when herd immunity is possible, which
s what we study next.

.4. Generalization: herd immunity

In this section we extend the model to include the possibility
f achieving herd immunity. For convenience, assume that in each
eriod there is a time-invariant probability h that contagion stops.
hen this occurs, the number of new infections becomes zero

orever. This can be thought of as the consequence of the mass-
accination campaigns currently implemented in many coun-
ries (White House, 2021), or scientific discovery leading to the
mergence of effective pharmacological interventions (e.g., the
epurposing of ivermectin as recently reported in Kory et al.,
021). It can be also seen as a way of modeling naturally acquired
mmunity in reduced-form, i.e., without making explicit a process
f gradual pathogenic exposure that subsequently gives rise to
atural immunity.
The probabilistic herd-immunity assumption implies that we

xpect the disease will be eradicated 1/h periods in the future,
ince

+ 2(1 − h)h + 3(1 − h)2h + · · · = 1/h.

ence, 1 − (1 − h)n is the probability that herd immunity is
achieved after n periods. Since this probability is independent of
other model parameters, we can calculate an expression equiva-
lent to µk(T , j), i.e., the number of infected individuals expected
when a lockdown phase of T periods is followed by a reopening
hase of j periods.

emma 4. Let there be k = 0, 1, . . . ,N infected individuals the
eriod before a lockdown policy (T , j) is imposed. Let h > 0.
9

Fig. 5. Infection progression with intervention (herd immunity impossible).
Notes: The population size is N = 1000, a = 0.25, s = 0.2 and there is no
possibility of herd immunity. The top (bottom) panel considers a lockdown
T = 10 (T = 20); these policies correspond to ‘‘moderate’’ and ‘‘severe’’
interventions. Each panel considers two possible initial infection rates, 1% and
10%, identified by the horizontal lines. The solid curves correspond to a ‘‘quick
response’’ (the lockdown policy is implemented after 4 periods), while the
dashed curves identify a ‘‘delayed response’’ (12 periods delay). Circles identify
periods when the lockdown starts, the squares identify the start of the reopening
phase.

The expected number of infected individuals at the end of the first
lockdown policy is

µ̂k(T , j) = (1 − h)T+jµk(T , j).

he expected number of infected individuals after j consecutive
ounds of trading is thus µ̂k(0, j) = (1 − h)jµk(0, j).

roof of Lemma 4. To prove the Lemma, consider a policy con-
isting of T rounds of lockdown followed by j trading rounds. At
hat point the policy expires and a (possible) new policy comes
nto effect. The probability that herd immunity is achieved at any
oint during these T + j periods is thus:

+ (1 − h)h + (1 − h)2h + · · · + (1 − h)T+j−1h ≡ 1 − (1 − h)T+j.

ith the complementary probability (1 − h)T+j, herd immunity
s not achieved. Given that this probability is independent of
ther factors in the model, the lemma is easily obtained by
onstruction, using the result in Lemma 3. □
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Fig. 6. Infection progression without intervention (herd immunity possible).
Notes: The population size is N = 1000, a = 0.25, s = 0.2 and h = 0.01.
or other details see notes to Fig. 4.

umerical illustration. Fig. 6 illustrates the expected progression
f the infection without any kind of intervention. Here, h =

.01, so if we interpret a period as a week, herd immunity is
nticipated to be achieved in about two years.
For low and medium transmission rates, the expected path of

he infection is similar to the case illustrated in Fig. 4. Intuitively,
n those cases the natural recovery process is enough to curb
ontagion so adding the possibility of herd immunity does not
hange the overall picture. Instead, the possibility of attaining
erd immunity is of primary importance when the disease is
ighly transmissible. In that case the progression of the disease
s much more contained as compared to the case illustrated in
ig. 4. Compared to the no-herd-immunity case, the infection is
xpected to peak in the short run, and to reach a lower rate
about 10 percentage points less in the illustration). The problem
s that the infection rate declines slowly after it reaches the peak.
his suggests that one-time lockdowns may be helpful to manage
he disease in the high-transmissibility scenario, because now
hey can complement the process underlying the development
f herd immunity. This is illustrated in Fig. 7, which considers
he same interventions studied earlier for the case h = 0.01 and
high-transmissibility. Two main observations can be made.

Observation 4. If herd immunity can be achieved, then repeated
lockdowns may be unnecessary to bring the epidemic under control.

The top panel in Fig. 7 shows that a one-time moderate in-
tervention significantly alters the long-run path of the infection
relative to the no-intervention case. However, the moderate in-
tervention illustrated in the top panel does not succeed in bring-
ing the long-run infection rate below the initial level. The bottom
panel shows that this can be accomplished by imposing a more
severe lockdown. Even for high initial rates, the one-time severe
lockdown is expected to significantly reduce long-run infection
rates, and to eventually bring them to zero.

Note that after reaching its peak, the expected share of the
infected population eventually declines to zero in all cases con-
sidered. This decline occurs even if the lockdown is not repeated,
i.e., if markets remain indefinitely open after period 100 in the
figure. In this case, the policymaker can select a lockdown length
T to contain the epidemic below a target rate, or to accelerate the
convergence to a no-infection state. A new lockdown can further
speed up the convergence to a no-infection state, and can do so
10
Fig. 7. Infection progression with intervention (herd immunity possible). Notes:
The population size is N = 1000, a = 0.25, s = 0.2 and h = 0.01. For other
etails see the note to Fig. 5.

ven if this subsequent intervention is more moderate than the
irst one (shorter duration).

In this sense, our analysis suggests that the repeated, extreme
ockdowns that we have been experiencing do not appear to be
enerally necessary to contain the disease within manageable
evels if herd immunity is possible. In this case, a one-time inter-
ention can be sufficient to ‘‘flatten the curve’’ and contain the
nfection rate below a desirable target. We can make one more
bservation.

bservation 5. If the epidemic is in its initial stages, then severe
ockdowns are unnecessary to contain it, if the intervention is not
elayed.

This observation emerges from considering the top panel in
ig. 7 for a starting infection rate of 1%. Suppose that we want
o maintain the infection rate below 10% so that new lockdowns
ould be imposed only if this level is reached when markets
eopen. A moderate lockdown implemented with a short delay
solid line) quickly reduces the infection rate and once markets
eopen the expected infection rate remains below 10% and even-
ually declines. However, implementing the lockdown with con-
iderable delay (dashed line) fails to keep the infection rate below
0% when markets reopen. As the delay affects the long-run path
f the infection, this requires the lockdown to be repeated in
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rder to achieve the desired target. The top panel also shows that
f the infection is not in the initial stages, say we are at 10% and
ot 1%, then the moderate lockdown would not help managing
he diseases in the long run, and the 10% target is rapidly over-
ome even if the intervention is implemented relatively quickly.
n this case, we need a severe lockdown to bring the disease under
ontrol, maintaining the rate of infections below 10% (bottom
anel).
We emphasize that these observations are simply illustrative,

iven the nature of the exercise conducted and the constraints
mposed on the model. Yet, the numerical experiments provide
ome useful insights. The greater the severity of the lockdown
ntervention, the lower the share of the population expected to
ontract the disease. The impact is non-linear; a severe inter-
ention is helpful to contain the epidemic, especially when the
isease is already quite widespread. In this case, repetition of the
ntervention might be unnecessary to maintain control over the
nfection. This suggests that severe lockdowns can be useful to
uickly bring a highly transmissible disease under control, but
t the same time repeating the lockdowns does not seem to be
enerally necessary. The fundamental question is whether or not
ociety benefits from this.
In order to look into this question, consider that lockdow-

s destroy income by precluding business activities. On the ot-
er hand, lockdowns prevent the healthcare system form being
verwhelmed in the initial stages of an epidemic. They can al-
o stave-off contagion long enough to ensure that – as the sick
ecover – healthcare capacity constraints do not bind in the long
un. These two opposite economic considerations give rise to a
radeoff that we study in what follows.

. Are lockdowns socially optimal?

In this section, we offer a measure of social welfare corre-
ponding to per-capita expected payoffs under a lockdown policy
T , j). The social welfare measure discussed in this section only
onsiders the trade-off between healthcare costs and lost incomes
uring the periods that encompass the policy duration, which is a
imitation introduced to maintain the analysis tractable. Another
ssumption made for tractability is that the effects of lockdowns
o not linger in the long run; once lockdowns are lifted, markets
mmediately resume their normal operations.

xpected per-capita income from trading. We start by determining
he maximum and minimum per capita income. In a representa-
ive period, no income is produced by those who cannot trade
nd ȳ > 0 for those who trade. Hence, an individual who trades
n every period has lifetime payoff

0 :=
ȳ

1 − δ
.

Now consider the most extreme lockdown policy: markets do
ot reopen until no one is infected. Here, the individual earns
othing until the epidemic is brought under control, at which
oint the individual switches to trade forever after, earning v0.
e have:

emma 5. Let k = 0, 1, . . . ,N denote the number of infected
ndividuals at the start of the most extreme lockdown policy. The
xpected payoff to an individual is

k = eTk[I − (1 − h)δR]
−1hv0, v0 := (v0, v0, . . . , v0)T.
11
roof of Lemma 5. Suppose there are a number of k = 0, 1, . . . ,N
nfected individuals at the start of the period. Define the (N +

)-dimensional column vectors

:= (v0, v1, . . . , vN )T and v0 := (v0, v0, . . . , v0)T.

hese vectors define expected payoffs vk given the number k of
nfected individuals at the start of the period, for the extreme case
hen the lockdown is only lifted when the disease is eradicated.
iven h ≥ 0 we have

k = hv0 + (1 − h)δeTkRv,

here eTkRv ≡
∑k

k′=0 Rkk′vk′ . It follows that we can express the
ector of expected payoffs as

= hv0 + (1 − h)δRv ⇒ v = [I − (1 − h)δR]
−1hv0,

here we used the fact that matrix I − (1 − h)δR has full rank,
o it is invertible. Hence, the expected payoff if we have today
infected individuals and there is the most extreme lockdown
olicy (until the disease is completely eradicated) is vk ∈ v, which
atisfies

k = eTk[I − (1 − h)δR]
−1hv0. □

Now we define expected per capita payoffs for general (T , j)
olicies, i.e., T periods of lockdown followed by j periods of mar-
et reopening. Again, let k be the number of individuals infected
he period before the lockdown comes into effect. The present
iscounted value of the average income generated until the policy
xpires (in period T + j) is defined by:

k(T , j) =

T+j∑
t=1

δt−1(1 − h)t−1h
1 − δT+j−t+1

1 − δ
× ȳ

+ (1 − h)T δT−1
j∑

ℓ=1

δℓ(1 − h)ℓ
(
1 −

µk(T , ℓ)
N

s
)
ȳ.

For computational convenience, the calculation does not in-
clude incomes past period T + j. The first summation calculates
the payoff (in present discounted terms) if herd immunity is
attained at any point in time t = 1, . . . , T + j. This can happen in
the lockdown phase, or during the reopening phase, comprising
periods ℓ = T + 1, . . . , T + j. The probability that herd immunity
is achieved in period t is (1 − h)t−1h. At that point, which we
discount by δt−1, markets reopen. This gives the representative
individual a payoff ȳ in each subsequent period t + 1, . . . , T + j;
in period t + 1, the present value of this stream is 1−δT+j−t+1

1−δ
× ȳ.

The second summation focuses on the reopening phase, i.e.,
periods ℓ = T + 1, . . . , T + j, which is why it is discounted by
δT−1. The summation calculates the payoff if herd immunity is not
achieved. In that case, µk(T , ℓ)/N defines the share of infected in-
dividuals in the population in a period ℓ. Since a fraction s of these
individuals is symptomatic and cannot trade, the upper bound on

the income generated in that period is
(
1 −

µk(T , ℓ)
N

s
)
ȳ.16 We

now proceed by modeling the costs of the disease, current and
expected.

16 It is an upper bound because we are including in the income calculation the
income of those who missed their trade meeting because the matching process
assigned them to a symptomatic individual. It follows that the lower bound on
our welfare calculation is obtained by doubling the loss of income due to the
inactivity of symptomatic individuals (i.e., as if no symptomatic was assigned to
another symptomatic individual).
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ealthcare costs of the epidemic. Our working assumption is that
he healthcare cost of the infection depends quadratically on its
everity. To measure the severity of the infection we use the share
f the population infected in a period. For concreteness, think
f the cost generated from the necessary healthcare equipment
nd resources in place to fight the infection (e.g., setting up and
taffing additional medical facilities).
To calculate this expected number, we use Lemma 4. Given

hat at the end of last period we have k = 0, 1, . . . ,N infected
individuals, then the expected number of infected individuals at
the end of the first period of lockdown is µ̂k(1, 0), it is µ̂k(2, 0),
at the end of the second period of lockdown and it is µ̂k(T , t), t
periods after the economy has reopened. We divided this number
by N to find the expected share of the infected population.

Given k, the per-capita healthcare expenditure is the present
discounted value of the cost associated with the policy (T , j) is

ck(T , j) =

T∑
t=1

δt−1(1 − h)t
(µk(t, 0)

N

)2

+ (1 − h)T δT−1
j∑

t=1

δt (1 − h)t
(µk(T , t)

N

)2
.

To understand this expression, fix the number k of individuals
who are infected before the lockdown policy comes into effect.
For computational convenience, the expenditure is only calcu-
lated up to period T + j, and does not include cost calculations
past period T + j. In the first phase (T periods) there is no market
activity so there is no additional contagion—only recoveries are
possible. In each period the disease can be eradicated with prob-
ability h, if herd immunity is achieved. In this case, the healthcare
costs drop to zero. Hence, in the expression above we only see the
terms multiplied by (1−h)t , i.e., the periods t = 1, . . . , T in which
herd immunity is not yet attained. In this lockdown phase the
expected number of infected individuals is µk(t, 0). This explains
the first summation on the RHS of the expression above.

The second summation refers to the reopening phase, i.e., pe-
riods t = 1, . . . , j post-lockdown. By the time the lockdown is
lifted, there is probability (1 − h)T that herd immunity has not
been yet achieved. In that case, µk(T , t) defines the expected
number of infected individuals. Since the reopening phase starts
T periods after the beginning of the lockdown, we discount the
second summation by δT−1.

Social welfare. Now that we have both the expected cost and the
expected income during the T + j periods of the lockdown policy
horizon, we offer a measure of average ex-ante welfare:

wk(T , j) := vk(T , j) − ck(T , j).

It is simply the present value of the per-capita income expected
in periods 1, . . . , T + j by the average individual, minus the per-
capita cost. We use this expression to study the dynamics of social
welfare based on different policies (T , j). The results are reported
n the following section. We emphasize that these calculations are
eant to offer a numerical illustration, not a carefully calibrated
ssessment of social welfare. In particular, we emphasize that the
elfare measure only considers the trade-off between healthcare
osts and lost incomes, and focuses only on the T + j periods that
ncompass the policy duration. This is done to offer an insight
nto the tradeoff, while reducing the complexity of the numerical
xercise.

.1. Optimal policy: numerical illustration

We study the welfare impact of lockdowns by means of nu-

erical simulations. For computational convenience, we work

12
Fig. 8. Welfare gains as a function of lockdown duration. Notes: Horizontal
xis: duration T of the lockdown phase. Vertical axis: welfare gain relative
o a no-lockdown policy. Each point is calculated for a 100 period horizon,
ith the reopening phase lasting 100 − T periods. The circle markers identify

the intervention that maximizes welfare. For the medium transmissibility case,
imposing no lockdown maximizes the welfare gain for all initial infection
rates considered. For the high transmissibility case, imposing some lockdown
maximizes the welfare gain with the maximum reached for T = 1, 3, 6 as the
nitial infection rate increases.

ith N = 100 individuals. All other parameters are as in the ear-
ier experiments.

Fig. 8 reports the results for the cases of medium and high
ransmissibility, which are the ones that matter in considering
he usefulness of lockdowns, give the earlier observations. Three
ases are considered, corresponding to three initial rates of in-
ection, 1%, 3% and 10%. Each line illustrates the gain in ex-ante
elfare associated with a lockdown lasting T = 0, 1, 2, . . . , 15

periods, as opposing to no lockdown. Hence, all curves start from
zero. For each T , ex-ante welfare is calculated for the 100 period
horizon, so the reopening phase lasts 100−T periods. A lockdown
lasting T periods that increases (lowers) welfare generates an
observation above (below) zero.

We consider an economy where the infection has not spread
out yet and is confined to a small group in the population (initial
infection rate 1%). We also consider economies where the infec-
tion has already spread out more widely, to 3% and 10% of the
population.

The welfare gain reported on the vertical axis is the change
in average ex-ante welfare for any given intervention T relative

to no intervention,
wk(T , j)

wk(0, T + j)
− 1. The length (or, severity) T

of the lockdown intervention, from 0 (no intervention) to 15, is
reported on the horizontal axis. The circle markers identify the
intervention that maximizes welfare, for each initial infection rate
scenario. The results of our analysis can be organized into two
main observations.

Observation 6. The welfare impact of lockdowns depends on the
diffusion of the epidemic. Immediately imposing a lockdown might
lower social welfare.

The numerical illustration suggests that lockdowns do not
necessarily increase welfare. Welfare declines in the figure when
the infection is not easily transmitted, which is when the size
of lost incomes exceeds the reduction in healthcare costs from
the lockdown. Moreover, lockdowns do not necessarily increase
social welfare even when the disease is highly transmissible. In
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act, this depends on the duration of the lockdown. Imposing a
ix-period lockdown is optimal when the infection rate is 10%.
he optimal duration declines to 3 and then 1 period as the initial
nfection rate decreases to 3% and 1%. This suggests a threshold
nfection rate might exist below which imposing a lockdown
s not welfare-improving. In other words, starting a lockdown
mmediately upon detection of the infection is not necessarily the
est strategy even if the diseases are highly transmissible.17
In this illustration, welfare gains are non-monotone in the

initial infection rate. Consider that the maximum welfare gain
from lockdowns is about 0.28% when the infection rate is 1%,
it climbs to about 0.83% when the infection rate is 3% and then
decreases to about 0.01% for an infection rate of 10%. This non-
monotonicity is interesting because although we see that longer
lockdowns are optimal as the starting infection rate increases,
they are not necessarily more socially beneficial. We can make
one more observation.

Observation 7. Prolonged lockdowns can be harmful to social
welfare, even for widespread epidemics. Extreme lock-downs are
suboptimal.

Two considerations support this observation. First, Fig. 8
shows that overshooting the optimal duration T of a lockdown
can be quite harmful, especially if the disease is highly trans-
missible but not widespread. In the illustration, welfare gains
are rather small and rapidly turn to losses as we move past the
optimal duration. For instance, with 1% infection rate, the optimal
duration of the lockdown is T = 1 periods. This welfare gain
urns to a loss as soon as the lockdown duration exceeds three
eriods. For higher infection rates welfare gains also eventually
urns to losses. All curves monotonically decline beyond T = 15.
onsequently, extreme lockdowns are suboptimal in all cases.
Second, if lockdowns fall short of the optimal lockdown du-

ation this does not dramatically reduce the welfare gains, be-
ause of their nonlinearity when the infection is not initially
idespread. In this case, a large share of the maximum welfare
ain can be attained even if the lockdown falls short of the
ptimal duration. We also observe that lockdowns shorter than
ptimal durations can reduce social welfare, when the infection
s already widespread. This is because in that case the lockdown
oes little to rapidly contain the disease and simply reduces
urrent incomes. This creates a welfare loss. However, notice
hat the welfare reduction from a shorter-than-optimal lockdown
s also quite smaller than the welfare loss from a longer-than-
ptimal lockdown, which again suggests that extreme lockdowns
re not optimal. Seen this way, the insight from these numerical
llustrations is that it may be best to err on the side of caution,
mplementing a shorter rather than longer lockdown. On the one
and the risk of overshooting the optimal duration carries a risk
f lowering welfare. On the other, falling short of the optimal
arget does not dissipate too much of potential welfare gains.

An additional aspect suggests a further reason to avoid pro-
onged lockdowns, or entirely avoid them. The model assumes
hat the income decline associated with a lockdown is only tem-
orary and as soon as the lockdown is lifted, market activi-
ies fully and immediately resume. However, recent experience
uggests that this assumption might be empirically unreason-
ble: some economic activities may be permanently damaged and
ay not recover when the lockdown is lifted. Below, we enrich

he model by introducing the possibility that lockdowns may
ermanently damage markets to some extent.

17 We thank an anonymous Referee for raising this point.
13
Fig. 9. Welfare impact when lockdowns induce permanent damage. Notes:
Welfare is calculated using expression (5). The parameters are the same as in
Fig. 9.

Permanent damage to economic activity. In this section we aug-
ment the model, by assuming that a fraction α(T ) ∈ [0, 1] of
er-capita income ȳ is permanently lost as a consequence of a
ockdown. This fraction is an increasing function of the duration
f the lockdown, T .

k(T , j) = vk(T , j) − ck(T , j) − α(T ) ×
1 − δT+j

1 − δ
× ȳ. (5)

In the numerical illustrations we use α(T ) = (T − 1)/(10T ).
onsider a lockdown lasting 5 periods. This induces a permanent
oss of a fraction α(T ) = 0.1 of per-capita income, which in
resent-value terms amounts to 1−δ100

1−δ
× ȳ.

Fig. 9 shows that when lockdowns have permanent adverse
consequences on economic activity, their desirability further de-
clines, from a social welfare perspective. This can be ascertained
by comparing Fig. 9 to 8. First, the optimal length of lockdowns
decreases even if the epidemic is widespread and highly trans-
missible. While in Fig. 8 the optimal lockdown lengths increased
in the infection rate, in Fig. 9 the optimal length does not exceed
one period and, in fact, is zero for 10% rate. Second, the welfare
gain now rapidly turns into a welfare loss if the lockdown dura-
tion overshoots the optimal target. While in Fig. 8 the welfare
gain turned to a loss after five periods lockdown for an initial
infection rate of 3%, now welfare declines immediately, as we
get into the second period of the lockdown. Overall, this is a
further indication supporting Observation 7, i.e., the numerical
illustrations suggest care in implementing strict lockdown poli-
cies because prolonged lockdowns may end up lowering social
welfare, even when the disease is widespread.

6. Discussion

This study contributes to the debate on how to best ad-
dress the challenges stemming from contagious diseases, such as
COVID-19. It offers a mathematical framework – based on the the-
ory of random matching – which makes explicit how economic
activity can contribute to the contagion process. The model is
used to assess the welfare consequences of non-pharmaceutical
interventions that limit economic and social activities—the so-
called ‘‘lockdowns’’. In our model, shutting down all business
activity is assumed to be the only way to stop the progress of con-

tagion. Lockdowns can thus reduce the burden on the healthcare
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ystem, but do so by shutting down all income streams as well.
he optimal policy intervention must therefore balance these two
spects.
Three insights emerge from the analysis, that seem relevant

or policy. First, there is the question of whether imposing dras-
ic stay-at-home mandates at the onset of the disease is the
est course of action. For example, Sweden was criticized by
he popular press for having kept businesses and schools open.
he analysis suggests that there can be gains from imposing
ome limits to economic activity at the onset of the epidemic
ecause this can be helpful to bring the epidemic under control
Observations 1–4). However, such a policy becomes counterpro-
uctive as restrictions on business activity are prolonged, because
ong-lasting lockdowns are unnecessary to contain the epidemic
Observations 5 and 7).

Second, there is the question of whether all countries should
dopt the same response pattern. Our simple model indicates that
ockdowns are not a ‘‘one-size-fits-all’’ type of policy. The severity
f the intervention should depend on the economic structure
n terms of costs imposed on the healthcare system, and the
nticipated evolution of the disease based on the characteristics
f the susceptible population (e.g., the age structure of a country).
ll else equal, while stricter interventions might be suitable for
ountries with more fragile healthcare systems, this policy is not
lobally optimal, especially in the initial stages of an epidemic if
he disease is not highly transmissible (Observation 6). In other
ords, the model does not lend support to the view that interven-
ions should be necessarily identical across countries. By means
f example, supposing that the extreme intervention adopted by
hina was locally optimal, the model does not imply that such an
ntervention is optimal for the rest of the world.

In fact, and this is a third insight, extreme and open-ended
ockdowns are not generally socially optimal (Observation 7). The
umerical illustrations show a nonlinear social welfare response
o policy intervention. Tighter restrictions on business activity
ased on the number of cases does not necessarily constitute an
ptimal intervention. As policymakers tighten the noose on the
conomy, they attain progressively smaller healthcare benefits
hile generating progressively larger income losses. This result
learly depends on the dynamics of healthcare costs, which are
ssumed quadratic in the share of the infected population, in the
umerical experiments presented here.
The numerical experiments reported in this paper should be

aken for what they are—illustrative of possible outcomes. They
hould not be taken as statements having general validity. In-
eed, we do not think the model can be practically useful for
olicy implementation at this stage of its development, as it is
till rather rudimentary in more than one aspect. We consider
t a first, albeit imperfect, attempt at integrating the contagion
rocess into a richer economic model of the spread of infectious
iseases. The question is thus how robust are the insights from
his rudimentary model to changes in the model assumptions.
oes the proposed model bias the results in favor of or against
estrictive interventions and business closures?

One the one hand, the model assumes that business shut-
owns, no matter how long, can only induce temporary reduc-
ions in income flows. It does not account for possible negative
xternalities associated with prolonged economic inactivity, such
s human capital decline, economic inequality, disruption of busi-
ess and financial networks, or declines in firm survival rates—
henomena that can depress economic activity for many years to
ome. This is an especially important consideration for countries
hose economic systems are fragile (e.g., consider Greece as
ompared to Germany). When we enrich the model with the pos-
ibility that protracted lockdowns permanently harm economic
ctivity, then even lockdowns of short duration can reduce wel-
are. Furthermore, in the model business activity is assumed to
14
spread the infection, and lockdowns prevent further transmission.
Yet, there is neither conclusive evidence nor consensus on the
empirical reduction in COVID-19 transmission and deaths that
can be attributed to lockdowns, or their overall efficacy in reduc-
ing case growth (e.g., Allen, 2021; Atkeson et al., 2020; Bendavid
et al., 2021; Berry et al., 2021). Additionally, the model assumes
that asymptomatic individuals are undetectable infection vectors
who have no incentive to avoid market interaction when in
fact this problem is greatly mitigated by wide access to quick
testing procedures. These assumptions suggest a bias in favor of
restrictive lockdowns.

On the other hand, our social welfare calculations consider
only a basic tradeoff: that between health costs directly associ-
ated with the care needed by infected individuals, and incomes
lost due to business closures. There are additional aspects of the
COVID-19 disease that are omitted from the model and, hence,
bias welfare results in opposite ways. Consider, for instance, the
loss of life directly caused by the disease, and the long-term
negative health consequences suffered by some COVID-19 pa-
tients. Furthermore, we did not account for the beneficial inc-
ome-smoothing effect of fiscal policy—many countries swiftly
addressed the lockdown-induced income decline with signifi-
cant government transfers financed by an increase in public
debt. These omissions bias the social welfare calculations against
adopting early and possibly longer lockdowns. This being said,
we also ruled out indirect harmful health effects of lockdowns,
e.g., increase in mortality from lack of care for other diseases,
mental health problems and increased suicides (e.g., see the
discussion in Bendavid et al., 2021), and the possibility that
outpatient treatments exist that could be effective at reducing
death from and COVID-19 hospitalizations (McCullough et al.,
2021). Omitting these aspects biases our welfare calculation in
favor of lockdowns.

Overall, these considerations suggest that our analysis, albeit
rudimentary, is more likely to be biased in favor of finding a
beneficial role for lockdowns than a negative one. Future re-
finements of the model should relax the assumptions discussed
above to enhance the empirical applicability of the model. Other
features missing from the current layout should also be included.
For instance, our current formulation of the severity of the inter-
vention is only governed by the duration parameter T . One could
consider an additional dimension that accounts for the proportion
of business activity affected by stay-at-home mandates. Another
extension is to consider contagious processes that are affected by
the population density, something that can be implemented by
assuming the contagion parameter p depends on the population
size N . Here, we have chosen to keep the framework nimble
in order to lay out as clearly as possible an explicit process of
contagion – our pairwise random matching process, that is –
and show how it can be integrated into economic models of
epidemics.
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